
Roles Documentation
Release 0.9

Arjan Molenaar

Jul 12, 2023

CONTENTS

1 Usage 3
1.1 Using Roles . 3
1.2 Using Context . 4

2 User API 7
2.1 RoleType metaclass . 7
2.2 Using roles in a context . 10
2.3 Ways to assign roles . 10
2.4 Generic roles . 11

3 Django support 13

4 Private API 15
4.1 Utility classes . 15
4.2 Context internals . 15

5 Change History 17

6 Indices and tables 19

Python Module Index 21

Index 23

i

ii

Roles Documentation, Release 0.9

Library for Role based development

Roles provides a Pythonic implementation of the DCI (Data Context Interaction) paradigm (http://www.artima.com/
articles/dci_vision.html).

Roles allow you to assign and revoke behaviour on a per-instance basis. This defines the big difference with mixins,
which are assigned at class level.

A role has a special meaning in a context (imagine you want to do a money transfer: in this context you’ll need 2
accounts, a source and a destination account). The roles module provides a simple implementation for defining contexts.

Roles can be assigned and revoked. Multiple roles can be applied to an instance. Revocation can happen in any
particular order.

Homepage:
http://amolenaar.github.com/roles

Sources:
http://github.com/amolenaar/roles

Downloads:
http://pypi.python.org/pypi/roles

Contents:

CONTENTS 1

http://www.artima.com/articles/dci_vision.html
http://www.artima.com/articles/dci_vision.html
http://amolenaar.github.com/roles
http://github.com/amolenaar/roles
http://pypi.python.org/pypi/roles

Roles Documentation, Release 0.9

2 CONTENTS

CHAPTER

ONE

USAGE

1.1 Using Roles

>>> from roles import RoleType

As a basic example, consider a data class:

>>> class Person:
... def __init__(self, name):
... self.name = name
>>> person = Person("John")

The instance should participate in a collaboration in which it fulfills a particular role:

>>> class Carpenter(metaclass=RoleType):
... def chop(self):
... return "chop, chop"

Assign the role to the person:

>>> Carpenter(person)
<__main__.Person+Carpenter object at 0x...>
>>> person
<__main__.Person+Carpenter object at 0x...>

The person is still a Person:

>>> isinstance(person, Person)
True

. . . and can do carpenter things:

>>> person.chop()
'chop, chop'

To revoke a role from an instance do

>>> Carpenter.revoke(person)
<__main__.Person object at 0x...>

It is much more convenient, though, to apply roles only in a specific context:

3

Roles Documentation, Release 0.9

>>> from roles.context import context

>>> class WoodChopping:
... def __init__(self, person):
... self.person = person
... self.chopping_context = context(self, person=Carpenter)
...
... def __call__(self):
... with self.chopping_context:
... return self.person.chop()
...
>>> ctx = WoodChopping(person)
>>> ctx()
'chop, chop'

1.2 Using Context

Roles make a lot of sense when used in a context. A classic example is the money transfer example. Here two accounts
are used and an amount of money is transfered from one account to the other. So, one account playes the role of source
account and the other plays the role of target account.

>>> from roles.context import context

Say we have this simple account class:

>>> class Account:
...
... def __init__(self, amount):
... self.balance = amount
... super(Account, self).__init__()
...
... def withdraw(self, amount):
... self.balance -= amount
...
... def deposit(self, amount):
... self.balance += amount

If you want to transfer money from one account to another, we’re normally calling one the source account and the other
the destination account. Let’s make that clear in code:

>>> class MoneySource(metaclass=RoleType):
...
... def transfer(self, amount):
... if self.balance >= amount:
... self.withdraw(amount)
... context.sink.receive(amount)
...
>>> class MoneySink(metaclass=RoleType):
...
... def receive(self, amount):
... self.deposit(amount)

4 Chapter 1. Usage

Roles Documentation, Release 0.9

During the act of a money transfer (what do you think about when money is transfered?), some amount is transfered
from one account to the other. That is made explicit in a context.

A context contains the objects that are required for some action and assign them the roles they will play during the
enactment. Roles have no meaning outside a context, since the logic executed is specific to this use case. Advantage
of using a context is that it is not required to pass role objects around. Also contexts can be used as intermediate data
store (for the duration of the context): note how the money source is finding its destination through the context.

>>> class TransferMoney:
...
... def __init__(self, source, sink):
... self.source = source
... self.sink = sink
... self.transfer_context = context(self,
... source=MoneySource,
... sink=MoneySink)
...
... def transfer_money(self, amount):
... """
... The interaction.
... """
... with self.transfer_context as ctx:
... ctx.source.transfer(amount)

Another way is to make the method itself act as context (well, the first argument is considered the context object:

>>> from roles.context import in_context

>>> class TransferMoney:
...
... def __init__(self, source, sink):
... self.source = source
... self.sink = sink
...
... @in_context
... def transfer_money(self, amount):
... """
... The interaction.
... """
... with MoneySource.played_by(self.source),\
... MoneySink.played_by(self.sink):
... self.source.transfer(amount)

1.2. Using Context 5

Roles Documentation, Release 0.9

6 Chapter 1. Usage

CHAPTER

TWO

USER API

2.1 RoleType metaclass

class roles.RoleType

RoleType is a metaclass that provides role support to classes. The initialization process has been altered to
provide addition and removal of roles.

It starts with a normal class:

>>> class Person:
... def __init__(self, name): self.name = name
... def am(self): print(self.name, 'is')

Apart from that a few roles can be defined. Simple objects with a default __init__() (no arguments) and the
RoleType as metaclass:

>>> class Carpenter(metaclass=RoleType):
... def chop(self): print(self.name, 'chops')
>>> class Biker(metaclass=RoleType):
... def bike(self): print(self.name, 'bikes')

Now, by default an object has no roles (in this case our person).

>>> person = Person('Joe')

Roles can be added by calling the assign() method:

>>> Carpenter.assign(person)
<roles.role.Person+Carpenter object at 0x...>

Or by calling the role on the subject:

>>> Carpenter(person)
<roles.role.Person+Carpenter object at 0x...>

The persons methods can be invoked:

>>> person.am()
Joe is

As well as the role’s methods:

7

Roles Documentation, Release 0.9

>>> person.chop()
Joe chops

The default behaviour is to apply the role directly to the instance.

>>> person
<roles.role.Person+Carpenter object at 0x...>

The module contains a function clone() that can be provided to the asign() method to create proxy instances
(the default function is called instance() and can also be found in this module):

>>> biker = Biker.assign(person, method=clone)
>>> biker
<roles.role.Person+Carpenter+Biker object at 0x...>
>>> biker is person
False

Objects can contain multiple roles:

>>> biker = Biker.assign(person)
>>> biker
<roles.role.Person+Carpenter+Biker object at 0x...>
>>> biker.__class__.__bases__
(<class 'roles.role.Person'>, <class 'roles.role.Carpenter'>, <class 'roles.role.
→˓Biker'>)

Note that a new class is assigned, with the roles applied (roles first).

Roles can be revoked:

>>> Carpenter.revoke(biker)
<roles.role.Person+Biker object at 0x...>
>>> biker.__class__.__bases__
(<class 'roles.role.Person'>, <class 'roles.role.Biker'>)

Revoking a non-existant role has no effect:

>>> Carpenter.revoke(biker)
<roles.role.Person+Biker object at 0x...>

Roles do not allow for overriding methods.

>>> class Incognito(metaclass=RoleType):
... def am(self): return 'under cover'
>>> Incognito(Person)
Traceback (most recent call last):
...

TypeError: Can not apply role when overriding methods: am

Caching

One more thing: role classes are cached. This means that if I want to assign a role to a different instance, the
same role class is applied:

8 Chapter 2. User API

Roles Documentation, Release 0.9

>>> person = Person('Joe')
>>> someone = Person('Jane')
>>> Biker(someone).__class__ is Biker(person).__class__
True

Changing role application

If for some reason the role should not be directly applied to the instance, another application method can be
assigned.

Here is an example that uses the clone method:

>>> person = Person('Joe')
>>> person.__class__
<class 'roles.role.Person'>
>>> biker = Biker(person, method=clone)
>>> biker
<roles.role.Person+Biker object at 0x...>
>>> person.__class__
<class 'roles.role.Person'>
>>> biker.bike()
Joe bikes

assign(subj: ~roles.role.T, method: ~typing.Callable[[~typing.Type[~roles.role.R], ~roles.role.T],
~roles.role.R] = <function instance>)→ Union[T, R]

Call is invoked when a role should be assigned to an object.

played_by(subj: T)→ Iterator[Union[T, R]]
Shorthand for using roles in with statements.

>>> class Biker(metaclass=RoleType):
... def bike(self): return 'bike, bike'
>>> class Person:
... pass
>>> john = Person()
>>> with Biker.played_by(john):
... john.bike()
'bike, bike'

revoke(subj: ~roles.role.R, method: ~typing.Callable[[~typing.Type[~roles.role.T], ~roles.role.R],
~roles.role.T] = <function instance>)→ T

Retract the role from subj.

By default the instance strategy is used.

2.1. RoleType metaclass 9

Roles Documentation, Release 0.9

2.2 Using roles in a context

Roles are played in a context. The roles.context module provides a means to access the context from within your
roles. Use this to make your role’s code simpler and more readable.

roles.context.context(ctxobj, **bindings)
The default application wide context stack.

Put a new context class on the context stack. This functionality should be called with the context class as first
argument.

>>> class SomeContext:
... pass # define some methods, define some roles
... def execute(self):
... with context(self):
... pass # do something

Roles can be fetched from the context by calling context.name. Just like that.

You can provide additional bindings to be performed:

>>> from roles.role import RoleType

>>> class SomeRole(metaclass=RoleType):
... pass

>>> class SomeContext:
... def __init__(self, data_object):
... self.data_object = data_object
... def execute(self):
... with context(self, data_object=SomeRole):
... pass # do something

Those bindings are applied when the context is entered (in this case immediately).

roles.context.in_context(func)
Decorator for running methods in context.

The context is the object (self).

2.3 Ways to assign roles

There are basically 3 ways to assign a role to an instance. The first one is to manipulate the instance’s class (this is the
default) and the second is to proxy the object by referencing the same instance dict (Borg pattern). The this (last resort)
is to create an adapter on top of the data instance.

10 Chapter 2. User API

Roles Documentation, Release 0.9

2.4 Generic roles

As an (non-DCI) extension it is possible to create role implementations tailored for specific classes.

Although this may clutter the clear and readable ways provided by DCI, for specific tasks it may help. Use it wisely.

2.4. Generic roles 11

Roles Documentation, Release 0.9

12 Chapter 2. User API

CHAPTER

THREE

DJANGO SUPPORT

Django is a popular web framework written in Python. Using DCI (or just roles) in Django is quite easy, but since
Django is using some meta classes of its own, a few things have to be taken into account.

First of all, roles that need to be applied to model classes (which is most obvious) should use roles.django.
ModelRoleType as metaclass.

>>> from roles.django import ModelRoleType

Then roles can be applied in the regular way.

>>> class MoneySource(metaclass=ModelRoleType):
...
... def transfer(self, amount):
... if self.balance >= amount:
... self.withdraw(amount)
... context.sink.receive(amount)

Since the roles module changes the class names (it adds the roles that are applied at a certain time), those can not be
used directly for storing. For now, saving objects should be done outside the role context.

>>> class TransferMoney:
...
... def __init__(self, source, sink):
... self.source = source
... self.sink = sink
...
... def transfer_money(self, amount):
... """
... The interaction.
... """
... with context(self,
... source=MoneySource,
... sink=MoneySink):
... # Let roles interact, in context
... self.source.transfer(amount)
... # Do storage when roles are removed
... self.source.save()
... self.sink.save()

13

http://djangoproject.com

Roles Documentation, Release 0.9

14 Chapter 3. Django support

CHAPTER

FOUR

PRIVATE API

For those interested in (non-public) API.

4.1 Utility classes

roles.role.class_fields(cls: Type, exclude: Sequence[str] = ('__doc__', '__module__', '__dict__',
'__weakref__', '__slots__'))→ Set[str]

Get all fields declared in a class, including superclasses.

Don’t forget to clear the cache if fields are added to a class or role!

4.2 Context internals

class roles.context.CurrentContextManager

The default application wide context stack.

Put a new context class on the context stack. This functionality should be called with the context class as first
argument.

>>> class SomeContext:
... pass # define some methods, define some roles
... def execute(self):
... with context(self):
... pass # do something

Roles can be fetched from the context by calling context.name. Just like that.

You can provide additional bindings to be performed:

>>> from roles.role import RoleType

>>> class SomeRole(metaclass=RoleType):
... pass

>>> class SomeContext:
... def __init__(self, data_object):
... self.data_object = data_object
... def execute(self):

(continues on next page)

15

Roles Documentation, Release 0.9

(continued from previous page)

... with context(self, data_object=SomeRole):

... pass # do something

Those bindings are applied when the context is entered (in this case immediately).

16 Chapter 4. Private API

CHAPTER

FIVE

CHANGE HISTORY

1.0.0

• Python 3.8+ only

• Removed roles.factory, use functools.singledispatch` instead

• Added type annotations

• Publish docs on readthedocs.io

• Build with Poetry

• CI on Github Actions

0.10

• Allow saving domain instances with roles applied. Thanks to Ben Scherrey and Chokchai Phatharamalai

• Deal with __slots__

• Can assign roles bindings to be used in the Context

0.9

• It is no longer allowed to let roles override methods.

• Added module roles.django

• Added Django application example (django_dci module)

• context is thread safe

• added adapter method for role assignment

0.8

• Removed @rolecontext. Seems not such a good idea.

• separated code in multiple modules

• Added DCI context management classes.

• Added warnings for using the factory functionality in a DCI context

0.7.0

• Added @rolecontext decorator to ensure roles are applied on function invocation.

0.6.0

• RoleType.played_by for easy use with with statement.

• removed roles function and psyco optimizations.

17

Roles Documentation, Release 0.9

• bug fixes and performance updates

0.5.0

• Support for contexts (with statement).

• revoke on factories now works as expected.

0.4.0

• Make the way a role is applied to an object pluggable. This means you can either apply the role to the original
instance or create a clone, using the original instance dict.

0.3.0

• Module works for Python 2.6 as well as Python 3.x. Doctests still run under 2.6.

0.2.0

• Added psyco_optimize() for optimizing code with psyco.

0.1.0

• Initial release: roles.py

18 Chapter 5. Change History

CHAPTER

SIX

INDICES AND TABLES

• genindex

• search

19

Roles Documentation, Release 0.9

20 Chapter 6. Indices and tables

PYTHON MODULE INDEX

r
roles, 7
roles.context, 10
roles.factory, 11
roles.role, 15

21

Roles Documentation, Release 0.9

22 Python Module Index

INDEX

A
assign() (roles.RoleType method), 9

C
class_fields() (in module roles.role), 15
context() (in module roles.context), 10
CurrentContextManager (class in roles.context), 15

I
in_context() (in module roles.context), 10

M
module

roles, 7
roles.context, 10, 15
roles.factory, 11
roles.role, 15

P
played_by() (roles.RoleType method), 9

R
revoke() (roles.RoleType method), 9
roles

module, 7
roles.context
module, 10, 15

roles.factory
module, 11

roles.role
module, 15

RoleType (class in roles), 7

23

	Usage
	Using Roles
	Using Context

	User API
	RoleType metaclass
	Using roles in a context
	Ways to assign roles
	Generic roles

	Django support
	Private API
	Utility classes
	Context internals

	Change History
	Indices and tables
	Python Module Index
	Index

